Use of Markov Chain Monte Carlo to estimate uncertainties in Bayesian reconstructions based on deformable models

Kenneth M. Hanson

Los Alamos National Laboratory

Presentation available under http://home.lanl.gov/kmh/

Acknowledgements

- MCMC experts
 - ► Julian Besag, Jim Guberantus, John Skilling, Malvin Kalos, David Higdon
- Deformable models
 - ► Greg Cunningham, Xavier Battle
- General discussions
 - ► Greg Cunningham, Richard Silver

Overview

- Overview of Markov Chain Monte Carlo (MCMC) technique
 - ▶ for drawing random samples from probability density functions
- Bayesian approach to model-based analysis
- Example tomographic reconstruction from two views
 - ▶ Deformable geometric models
- Probabilistic interpretation of priors (MCMC)
- Estimation of uncertainty in reconstructed shape
 - ▶ Use of MCMC to sample posterior
 - ► Hard truth approach probe model stiffness

MCMC - problem statement

- Parameter space of n dimensions represented by vector x
- Given an "arbitrary" **target** probability density function (pdf), $q(\mathbf{x})$, draw a set of samples $\{\mathbf{x}_k\}$ from it
- Only requirement typically is that, given \mathbf{x} , one be able to evaluate $Cq(\mathbf{x})$, where C is an unknown constant
 - ► MCMC algorithms do not typically require knowledge of the normalization constant of the target pdf; from now on the multiplicative constant *C* will not be made explicit
- Although focus here is on continuous variables, MCMC applies to discrete variables as well
- Called a Markov chain since \mathbf{x}_{k+1} depends only on \mathbf{x}_k

Uses of MCMC

- Permits evaluation of the expectation values
 - ▶ for K samples, $\langle f(\mathbf{x}) \rangle = \int f(\mathbf{x}) \ q(\mathbf{x}) \ d\mathbf{x} \cong (1/K) \ \Sigma_k \ f(\mathbf{x}_k)$
 - ▶ typical use is to calculate mean $\langle \mathbf{x} \rangle$ and variance $\langle (\mathbf{x} \langle \mathbf{x} \rangle)^2 \rangle$
- Useful for evaluating integrals, such as the partition function for properly normalizing the pdf
- Dynamic display of sequence as video loop
 - provides visualization of uncertainties in model and range of model variations
- Automatic marginalization
 - ► when considering any subset of parameters of an MCMC sequence, the remaining parameters are marginalized over

Markov Chain Monte Carlo

Generates sequence of random samples from an arbitrary probability density function

- Metropolis algorithm:
 - draw trial step from symmetric pdf, i.e., $t(\Delta \mathbf{x}) = t(-\Delta \mathbf{x})$
 - accept or reject trial step
 - simple and generally applicable
 - relies only on calculationof target pdf for any x

Metropolis algorithm

- Select initial parameter vector \mathbf{x}_0
- Iterate as follows: at iteration number k
 - (1) create new trial position $\mathbf{x}^* = \mathbf{x}_k + \Delta \mathbf{x}$, where $\Delta \mathbf{x}$ is randomly chosen from $t(\Delta \mathbf{x})$
 - (2) calculate ratio $r = q(\mathbf{x}^*)/q(\mathbf{x}_k)$
 - (3) accept trial position, i.e. set $\mathbf{x}_{k+1} = \mathbf{x}^*$ if $r \ge 1$ or with probability r, if r < 1 otherwise stay put, $\mathbf{x}_{k+1} = \mathbf{x}_k$
- Requires only computation of $q(\mathbf{x})$

Choice of trial distribution

- Loose requirements on trial distribution t(.)
 - stationary; independent of position
- Often used functions include
 - ► *n*-D Gaussian, isotropic and uncorrelated
 - ► *n*-D Cauchy, isotropic and uncorrelated
- Choose width to "optimize" MCMC efficiency
 - ▶ rule of thumb: aim for acceptance fraction of about 25%

Experiments with the Metropolis algorithm

- Target distribution $q(\mathbf{x})$ is *n* dimensional Gaussian
 - uncorrelated, univariate (isotropic with unit variance)
 - most generic case
- Trial distribution $t(\Delta \mathbf{x})$ is *n* dimensional Gaussian

MCMC sequences for 2D Gaussian

- ► results of running Metropolis with ratios of width of trial to target of 0.25, 1, and 4
- when trial pdf is much smaller than target pdf, movement across target pdf is slow
- when trial width same as target, samples seem to sample target pdf better
- when trial width much larger than target, trials stay put for long periods, but jumps are large
 - this example from Hanson and Cunningham (SPIE, 1998)

MCMC sequences for 2D Gaussian

- ► results of running Metropolis with ratios of width of trial to target of 0.25, 1, and 4
- ► display accumulated 2D distribution for 1000 trials
- viewed this way, it is difficult to see difference between top two images
- when trial pdf much larger than target, fewer splats, but further apart

MCMC - autocorrelation and efficiency

- ► In MCMC sequence, subsequent parameter values are usually correlated
- ▶ Degree of correlation quantified by **autocorrelation function**:

$$\rho(l) = \frac{1}{N} \sum_{i=1}^{N} y(i) y(i-l)$$

where y(x) is the sequence and l is lag

► For Markov chain, expect exponential

$$\rho(l) = \exp\left[-\left|\frac{l}{\lambda}\right|\right]$$

► Sampling **efficiency** is

$$\eta = [1 + 2\sum_{l=1}^{\infty} \rho(l)]^{-1} = \frac{1}{1 + 2\lambda}$$

► In other words, η^{-1} iterates required to achieve one statistically independent sample

Autocorrelation for 2D Gaussian

- plot confirms that the autocorrelation drops slowly when the trial width is much smaller than the target width;
 MCMC efficiency is poor
- best efficiency is when trial width about same as target width (for 2D)

Normalized autocovariance for various widths of trial pdf relative to target: 0.25, 1, and 4

Efficiency as function of width of trial pdf

- ► for univariate Gaussians, with 1 to 64 dimensions
- efficiency as function of width of trial distributions
- boxes are predictions of optimal efficiency from diffusion theory
 [A. Gelman, et al., 1996]
- efficiency drops
 reciprocally with number
 of dimensions

Efficiency as function of acceptance fraction

- ► for univariate Gaussians, with 1 to 64 dimensions
- efficiency as function of acceptance fraction
- ▶ best efficiency is achieved when about 25% of trials are accepted for a moderate number of dimensions

Efficiency of Metropolis algorithm

- Results of experimental study agree with predictions from diffusion theory (A. Gelman et al., 1996)
- Optimum choice for width of Gaussian trial distribution occurs for acceptance fraction of about 25% (but is a weak function of number of dimensions)
- Optimal statistical efficiency: $\eta \sim 0.3/n$
 - ▶ holds for simplest case of uncorrelated, equivariate Gaussian
 - ► correlation and variable variance generally decreases efficiency

Further considerations

- When target distribution $q(\mathbf{x})$ not isotropic
 - ► difficult to accommodate with isotropic $t(\Delta \mathbf{x})$
 - each parameter can have different efficiency
 - desirable to vary width of different $t(\mathbf{x})$ to approximately match $q(\mathbf{x})$
 - recovers efficiency of univariate case
- When $q(\mathbf{x})$ has correlations
 - ▶ $t(\mathbf{x})$ should match shape of $q(\mathbf{x})$

MCMC Issues

- Confirmation of **convergence** to target pdf
 - ▶ is sequence in thermodynamic equilibrium with target pdf?
 - validity of estimated properties of parameters (covariance)

Burn in

- ▶ at beginning of sequence, may need to run MCMC for awhile to achieve convergence to target pdf
- Use of multiple sequences
 - ▶ different starting values can help confirm convergence
 - ▶ natural choice when using computers with multiple CPUs
- Accuracy of estimated properties of parameters
 - ► related to efficiency, described above
- Optimization of efficiency of MCMC

Annealing

- Introduction of fictitious temperature
 - define functional $\varphi(\mathbf{x})$ as minus-logarithm of target probability $\varphi(\mathbf{x}) = -\log(q(\mathbf{x}))$
 - scale φ by an inverse "temperature" to form new pdf $q^{\dagger}(\mathbf{x}, T) = \exp[-T^{-1}\varphi(\mathbf{x})]$
 - $q^{\dagger}(\mathbf{x}, T)$ is flatter than $q(\mathbf{x})$ for T > 1 (called annealing)
- Uses of annealing (also called tempering)
 - ▶ allows MCMC to move between multiple peaks in $q(\mathbf{x})$
 - ▶ simulated annealing optimization algorithm (takes $\lim T \to 0$) for purpose of finding global minimum
 - ► estimate normalization constant (**partition function**) by including *T* as parameter in MCMC:

$$Z = \int q(\mathbf{x}) d\mathbf{x} = \int_0^1 q^{\dagger}(\mathbf{x}, T) d\mathbf{x} dT$$

Annealing to handle multiple peaks

- ► Example target distribution is three narrow, well-separated peaks
- For original distribution (T = 1), an MCMC run of 10000 steps rarely moves between peaks
- At temperature T = 100 (right), MCMC moves easily between peaks and through surrounding regions

from M-D Wu and W. J. Fitzgerald, Maximum Entropy and Bayesian Methods (1996)

Other MCMC algorithms

Gibbs

- ► vary only one component of **x** at a time
- ► draw new value of x_j from conditional $q(x_j | x_1 x_2 ... x_{j-1} x_{j+1} ...)$

Metropolis-Hastings

- ▶ allows use of nonsymmetric trial functions, $t(\Delta \mathbf{x}; \mathbf{x}_k)$, suitably chosen to improve efficiency
- use $r = [t(\Delta \mathbf{x}; \mathbf{x}_k) \ q(\mathbf{x}^*)] / [t(-\Delta \mathbf{x}; \mathbf{x}^*) \ q(\mathbf{x}_k)]$

• Langevin technique

- uses gradient* of minus-log-prob to shift trial function towards regions of higher probability
- uses Metropolis-Hastings
- * adjoint differentiation provides efficient gradient calculation

Hamiltonian hybrid algorithm

- ► called hybrid because it alternates Gibbs & Metropolis steps
- \blacktriangleright associate with each parameter x_i a momentum p_i
- ▶ define a Hamiltonian

$$H = \varphi(\mathbf{x}) + \sum p_i^2/(2 m_i)$$
; where $\varphi = -\log(q(\mathbf{x}))$

► new pdf:

$$q'(\mathbf{x}, \mathbf{p}) = \exp(-H(\mathbf{x}, \mathbf{p})) = q(\mathbf{x}) \exp(-\sum p_i^2/(2 m_i))$$

- ► can easily move long distances in (x, p) space at constant H using Hamiltonian dynamics, so Metropolis step is very efficient
 - requires gradient* of φ (minus-log-prob)
- ► Gibbs step: draw **p** from Gaussian (at fixed **x**)
- efficiency may be better than Metropolis for large dimensions

^{*} adjoint differentiation provides efficient gradient calculation

Hamiltonian hybrid algorithm

Typical trajectories:

red path - Gibbs sample from momentum distribution green path - trajectory with constant *H*, followed by Metropolis

Conclusions about MCMC

- MCMC provides good tool for exploring the posterior and hence for drawing inferences about models and parameters
- For valid results, care must be taken to
 - verify convergence of the sequence
 - exclude early part of sequence, before convergence reached
 - ▶ be wary of multiple peaks that need to be sampled
- For good efficiency, care must be taken to
 - ▶ adjust the size and shape of the trial distribution; rule of thumb is to aim for 25% trial acceptance for 5 < n < 100
- A lot of research is happening don't worry, be patient

Bayesian approach to model-based analysis

Models

- used to describe and analyze physical world
- parameters inferred from data

Bayesian analysis

- uncertainties in parameters described by probability density functions (pdf)
- prior knowledge about situation may be incorporated
- quantitatively and logically consistent methodology for making inferences about models
- open-ended approach
 - can incorporate new data
 - can extend models and choose between alternatives

Bayesian viewpoint

- Focus on probability distribution functions (pdf)
 - uncertainties in estimates more important than the estimates themselves
- Bayes law: $p(\mathbf{a}|\mathbf{d}) \sim p(\mathbf{a}) p(\mathbf{d}|\mathbf{a})$
 - ▶ where **a** is parameter vector and **d** represents data
 - ▶ pdf before experiment, $p(\mathbf{a})$ (called *prior*)
 - ▶ modified by pdf describing experiments, $p(\mathbf{d}|\mathbf{a})$ (*likelihood*)
 - ▶ yields pdf summarizing what is known, $p(\mathbf{a}|\mathbf{d})$ (posterior)
- Experiment should provide decisive information
 - posterior much narrower than prior

Who wins the election?

- Process: people vote for candidate A or candidate B
 - $ightharpoonup V_A = \text{number of votes A receives}$
 - $ightharpoonup V_B = \text{number of votes B receives}$
- Winner is one with simple majority
 - if $V_A > V_B$, A wins, etc.
- Before election, pollsters sample voters; try to predict who will win
- Plot shows B ahead of A: but considering uncertainties, "it is too close to call"

Who wins the election?

- During voting process, one can combine known results with predictions for unknown results to obtain new prediction for outcome
 - ▶ should arrive at more narrow probability distributions
- After voting process, one knows V_A and V_B with certainty: winner declared!

Bayesian model building

- Steps in model building
 - choose how to model (represent) object
 - assign priors to parameters based on what is known beforehand
 - ► for given measurements, determine model with highest posterior probability (MAP)
 - assess uncertainties in model parameters
- Higher levels of inference
 - assess suitability of model to explain data
 - ▶ if necessary, try alternative models and decide among them

Example - tomographic reconstruction

- Problem reconstruct object from two projections
 - ▶ 2 orthogonal, parallel projections (128 samples in each view)
 - ► Gaussian noise; rms-dev 5% of proj. max

Original object

Two orthogonal projections with 5% rms noise

Prior information used in reconstruction

- Assumptions about object
 - object density is uniform
 - ▶ abrupt change in density at edge
 - boundary is relatively smooth
- Object model
 - object boundary deformable geometric model
 - relatively smooth
 - ► interior has uniform density (known)
 - exterior density is zero
 - only variables are those describing boundary

Likelihood

- Probability of data **d**, given model and parameters **a**
- For measurements degraded by independent Gaussiandistributed noise, minus-log-likelihood is

$$-\log[p(\mathbf{d}|\mathbf{a})] = \varphi(\mathbf{a}) = \frac{1}{2}\chi^2 = \frac{1}{2}\sum \frac{(d_i - d_i^*)^2}{\sigma^2}$$

where d_i is the *i*th measurement, d_i^* its predicted value (for specific **a**), σ is rms noise in measurements

Deformable geometric models

- Natural to describe objects in terms of their boundaries
- In data analysis aim is to balance
 - internal energy ε: measure of deformation
 - \blacktriangleright external energy, e.g. χ^2 : measure of mismatch to data
- Constrain smoothness based on curvature κ
 - ▶ deformation energy, e.g., $\varepsilon \sim \int \kappa^2 ds$, for curve
 - ► controls number of degrees of freedom of curve
- Analogy to elastic materials rods, sheets

Probabilistic interpretation of prior for deformable model

- Probability of shape: $\sim \exp\left[-\frac{\alpha S}{(2\pi)^2}\oint \kappa^2 ds\right]$
- Sample prior pdf using MCMC
 - ► shows variety of shapes deemed admissible before experiment, capturing our uncertainty about shape
 - ▶ decide on $\alpha = 5$ on basis of appearance of shapes

Plausible shapes drawn from prior for $\alpha = 5$

Tomographic reconstruction from two views

- Data consist of two orthogonal views
 - parallel projections, each containing 128 samples
 - ► Gaussian noise; rms-dev 5% of proj. max
- Object model
 - ▶ boundary is 50-sided polygon
 - \blacktriangleright smoothness achieved by prior on curvature κ
 - uniform (known) density inside boundary
- $\varphi = -\log \text{ posterior} = \frac{1}{2}\chi^2 + \frac{\alpha S}{(2\pi)^2} \oint \kappa^2 ds$,
 - \blacktriangleright where *S* is total perimeter,
 - $\triangleright \chi^2$ is sum of squares of residuals divided by noise variance

The Bayes Inference Engine

- Flexible modeling tool developed at LANL
 - object described as composite geometric and density model
 - measurement process (principally radiography)
- User interface via graphically-programmed data-flow diagram
- Full interactivity with every aspect of model
- Provides
 - ► MAP estimate by optimization (gradient by adj. diff.)
 - samples of posterior by MCMC
 - uncertainty estimates

The Bayes Inference Engine

BIE data-flow diagram to find MAP solution

► Optimizer uses gradients that are efficiently calculated by adjoint differentiation in code technique(ADICT)

MAP reconstruction

 Determine boundary that maximizes posterior probability

- Not perfect, but very good for only two projections
- Question: How do we quantify uncertainty in reconstruction?

Reconstructed boundary (gray-scale) compared with original object (red line)

The Bayes Inference Engine

BIE data-flow diagram to produce MCMC sequence

Uncertainties in two-view reconstruction

- From MCMC samples from posterior with 150,000 steps, display three selected boundaries
 - ► these represent alternative plausible solutions

compared to original object

compared to MAP estimated object

Visualization of uncertainty

- Problem inherently difficult for numerous parameters
 - wish to see correlations among uncertainties in parameters
- View MCMC sequence as video loop
 - advantage is one directly observes model in normal way
- View several plausible realizations from MCMC sequence
- Marginalized uncertainties (one parameter at a time)
 - ► rms uncertainty (or variance) for each parameter
 - ► credible intervals

Posterior mean of gray-scale image

- Average gray-scale images over MCMC samples from posterior
- Value of pixel is probability it lies inside object boundary
- Amount of blur in edge is related to magnitude of uncertainty in edge localization
- Observe that posterior median nearly same as MAP boundary
 - ► implies posterior probability distribution symmetric about MAP parameter set

Posterior mean of gray-scale image

- Pixels in posterior mean image with value 0.5 represent posterior median boundary position
 - similar to MAP boundary for two-view problem

Posterior mean image compared to MAP boundary (red line)

Uncertainty in edge localization

- Steepness of edge profile of posterior mean image indicates uncertainty in edge localization
 - ▶ uncertainty is nonstationary; varies with position

At top of reconstruction (tangent point)

Top, left of center, less well determined

Credible interval

- Bayesian "confidence interval"
 - probability that actual parameter lies within interval
 - ► different from standard definition of confidence interval, which is based on (hypothetical) repeated experiments
- For MCMC posterior mean image, determines credible interval for boundary position
 - ▶ 95% credible interval is region of posterior mean image in which pixel values lie between 0.025 and 0.975.

Credible interval

• 95% credible interval of boundary localization for two-view reconstruction compared with original object boundary (red line)

► narrower at tangent points

- ▶ 92% of original boundary lies inside95% credible interval
- Marginalized measure
 of uncertainty ignores correlations
 among different positions

Important issues

- Bayesian vs. frequentist approach to uncertainty assessment
 - ► MCMC sampling of posterior
 - single data set, single object
 - ► Monte Carlo simulation of repeated experiments to determine characteristics of the estimator used
 - variety of data sets (variety of objects)
- Advantages of Bayesian approach
 - ▶ applies to the specific data set supplied
 - exposes null space; multiple solutions that yield exactly same measurements

Stiffness of posterior

• Gaussian approximation for posterior:

$$-\log p(\mathbf{a}|\mathbf{d}) = \varphi = \varphi_0 + (\mathbf{a} - \mathbf{a}_0)^{\mathrm{T}} \mathbf{K} (\mathbf{a} - \mathbf{a}_0)$$

- where **a** is parameter vector **K** is the curvature or second derivative matrix of φ (aka Hessian) and
 - \mathbf{a}_0 is the position of the minimum in φ (MAP estimate)
- Curvature matrix **K** is measure of stiffness of solution
- Covariance matrix is inverse of \mathbf{K} : $\mathbf{C} = \mathbf{K}^{-1}$

Determining stiffness of posterior

- First estimate \mathbf{a}_0 by minimizing φ (MAP solution)
- Apply force to model (a vector in parameter space)
- Effect of force is to add potential to φ :

$$\varphi = \mathbf{f}^{\mathrm{T}}(\mathbf{a} - \mathbf{a}_0) + \varphi_0 + (\mathbf{a} - \mathbf{a}_0)^{\mathrm{T}} \mathbf{K} (\mathbf{a} - \mathbf{a}_0)$$

• Minimizing φ again; setting gradient of φ to zero

or
$$\mathbf{K} (\mathbf{a} - \mathbf{a}_0) = \mathbf{f}$$

or $\mathbf{a} - \mathbf{a}_0 = \mathbf{K}^{-1} \mathbf{f} = \mathbf{C} \mathbf{f}$

- Parameter displacement from MAP solution is proportional to covariance matrix times applied force
- We have called this the "hard truth" method, because truth is hard!

Hard truth method

- Interpret $\varphi = -\log \text{ probability}$ as potential function; sum of
 - deformation energy
 - $ightharpoonup \frac{1}{2}\chi^2$
- Stiffness of model proportional to curvature of φ
- Row of covariance matrix is displacement obtained by applying a force to MAP model and reminimizing φ

Applying force (white bar) to MAP boundary (red) moves it to new location (yellow-dashed)

Summary

- MCMC technique to sample arbitrary pdf
- Bayesian approach to model building
 - uncertainty assessment
 - ► MCMC sampling of posterior
 - covariance estimates
 - credible intervals
 - permits use of prior information
- Deformable geometric models
 - ▶ useful to capture notions of object shape
 - smoothness prior states preference for smooth boundary
- Example tomographic reconstruction from two views

Bibliography - MCMC

- ► "Posterior sampling with improved efficiency," K. M. Hanson and G. S. Cunningham, *Proc. SPIE* **3338**, 371-382 (1998); includes introduction to MCMC
- ► *Markov Chain Monte Carlo in Practice*, W. R. Gilks et al., (Chapman and Hall, 1996); excellent general-purpose book
- ► "Efficient Metropolis jumping rules," A. Gelman et al, in *Bayesian Statistics* 5, J. M. Bernardo et al., (Oxford Univ., 1996); diffusion theory
- ► "Bayesian computation and stochastic systems," J. Besag et al., *Stat. Sci.* **10**, 3-66 (1995); MCMC applied to image analysis
- ► Bayesian Learning for Neural Networks, R. M. Neal, (Springer, 1996); Hamiltonian hybrid MCMC
- ► "Bayesian multinodal evidence computation by adaptive tempered MCMC," M-D Wu and W. J. Fitzgerald, in *Maximum Entropy and Bayesian Methods*, K. M. Hanson and R. N. Silver, eds., (Kluwer Academic, 1996); annealing
- ► "Inversion based on complex simulations," K. M. Hanson, *Maximum Entropy and Bayesian Methods*, G. J. Erickson et al., eds., (Kluwer Academic, 1998); describes adjoint differentiation and its usefulness

Bibliography - Bayesian analysis

- "Uncertainty assessment for reconstructions based on deformable models," K. M. Hanson et al., *Int. J. Imaging Syst. Technol.* **8**, pp. 506-512 (1997)
- "The hard truth," K. M. Hanson et al., in *Maximum Entropy and Bayesian Methods*, pp. 157-164 (Kluwer, 1996)
- "Operation of the Bayes Inference Engine," K. M. Hanson et al., in *Maximum Entropy and Bayesian Methods*, pp. 309-318 (Kluwer, 1999)
- "Inference from Rossi traces," K. M. Hanson et al., to be published in *Maximum Entropy and Bayesian Methods*, (Kluwer, 2001)

These and other papers available under http://home.lanl.gov/kmh/